145 research outputs found

    Relevance of Metric-Free Interactions in Flocking Phenomena

    Full text link
    We show that the collective properties of self-propelled particles aligning with their "topological" (Voronoi) neighbors are qualitatively different from those of usual models where metric interaction ranges are used. This relevance of metric-free interactions, shown in a minimal setting, indicate that realistic models for the cohesive motion of cells, bird flocks, and fish schools may have to incorporate them, as suggested by recent observations.Comment: To appear on Physical Review Letter

    Rare-event induced binding transition of heteropolymers

    Full text link
    Sequence heterogeneity broadens the binding transition of a polymer onto a linear or planar substrate. This effect is analyzed in a real-space renormalization group scheme designed to capture the statistics of rare events. In the strongly disordered regime, binding initiates at an exponentially rare set of ``good contacts''. Renormalization of the contact potential yields a Kosterlitz-Thouless type transition in any dimension. This and other predictions are confirmed by extensive numerical simulations of a directed polymer interacting with a columnar defect.Comment: 4 pages, 3 figure

    Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes

    Get PDF
    In vivo measurements of the passive movements of biomolecules or vesicles in cells consistently report ''anomalous diffusion'', where mean-squared displacements scale as a power law of time with exponent α<1\alpha< 1 (subdiffusion). While the detailed mechanisms causing such behaviors are not always elucidated, movement hindrance by obstacles is often invoked. However, our understanding of how hindered diffusion leads to subdiffusion is based on diffusion amidst randomly-located \textit{immobile} obstacles. Here, we have used Monte-Carlo simulations to investigate transient subdiffusion due to \textit{mobile} obstacles with various modes of mobility. Our simulations confirm that the anomalous regimes rapidly disappear when the obstacles move by Brownian motion. By contrast, mobile obstacles with more confined displacements, e.g. Orstein-Ulhenbeck motion, are shown to preserve subdiffusive regimes. The mean-squared displacement of tracked protein displays convincing power-laws with anomalous exponent α\alpha that varies with the density of OU obstacles or the relaxation time-scale of the OU process. In particular, some of the values we observed are significantly below the universal value predicted for immobile obstacles in 2d. Therefore, our results show that subdiffusion due to mobile obstacles with OU-type of motion may account for the large variation range exhibited by experimental measurements in living cells and may explain that some experimental estimates are below the universal value predicted for immobile obstacles.Comment: Physical Review E (2014

    Competing ferromagnetic and nematic alignment in self-propelled polar particles

    Full text link
    We study a Vicsek-style model of self-propelled particles where ferromagnetic and nematic alignment compete in both the usual "metric" version and in the "metric-free" case where a particle interacts with its Voronoi neighbors. We show that the phase diagram of this out-of-equilibrium XY model is similar to that of its equilibrium counterpart: the properties of the fully-nematic model, studied before in [F. Ginelli, F. Peruani, M. Baer, and H. Chat\'e, Phys. Rev. Lett. 104, 184502 (2010)], are thus robust to the introduction of a modest bias of interactions towards ferromagnetic alignment. The direct transitions between polar and nematic ordered phases are shown to be discontinuous in the metric case, and continuous, belonging to the Ising universality class, in the metric-free version

    Comment on ``Phase Transitions in Systems of Self-Propelled Agents and Related Network Models''

    Full text link
    In this comment we show that the transition to collective motion in Vicsek-like systems with angular noise remain discontinuous for large velocity values. Thus, the networks studied by Aldana {\et al.} [Phys. Rev. Lett. {\bf 98}, 095702 (2007)] at best constitute a singular, large velocity limit of these systems.Comment: To appear on Physical Review Letter

    From Phase to Micro-Phase Separation in Flocking Models: The Essential Role of Non-Equilibrium Fluctuations

    Get PDF
    We show that the flocking transition in the Vicsek model is best understood as a liquid-gas transition, rather than an order-disorder one. The full phase separation observed in flocking models with Z2 rotational symmetry is, however, replaced by a microphase separation leading to a smectic arrangement of traveling ordered bands. Remarkably, continuous deterministic descriptions do not account for this difference, which is only recovered at the fluctuating hydrodynamics level. Scalar and vectorial order parameters indeed produce different types of number fluctuations, which we show to be essential in selecting the inhomogeneous patterns. This highlights an unexpected role of fluctuations in the selection of flock shapes.Comment: 5 p., 5 fig.. Supplementary material: 7 movie
    • …
    corecore